Joint Duty Cycle Scheduling, Resource Allocation and Multi-constrained QoS Routing Algorithm

نویسندگان

  • Jamila Ben Slimane
  • Yeqiong Song
  • Anis Koubaa
  • Mounir Frikha
چکیده

Wireless mesh sensor networks (WMSNs) have recently gained a lot of interest due to their communication capability to support various applications with different Quality of Service (QoS) requirements. The most challenging issue is providing a tradeoff between the resource efficiency and the multiconstrained QoS support. For this purpose, we propose a cross-layer algorithm JSAR (Joint duty cycle Scheduling, resource Allocation and multi-constrained QoS Routing algorithm) for WMSNs on based multi-channel multi-time slot MAC. To our best knowledge, JSAR is the first algorithm which simultaneously combines, a duty cycle scheduling scheme for energy saving, a resource allocation scheme for efficient use of frequency channels and time slots, and an heuristic for multi-constrained routing protocol. The performance of JSAR has been evaluated, showing that it is suitable for on-line implementation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multi-Mode Resource-Constrained Optimization of Time-Cost Trade-off Problems in Project Scheduling Using a Genetic Algorithm

In this paper, we present a genetic algorithm (GA) for optimization of a multi-mode resource constrained time cost trade off (MRCTCT) problem. The proposed GA, each activity has several operational modes and each mode identifies a possible executive time and cost of the activity. Beyond earlier studies on time-cost trade-off problem, in MRCTCT problem, resource requirements of each execution mo...

متن کامل

Advanced operations research techniques for multi-constraint QoS routing in internet

Internet Traffic has grown exponentially over last few years due to provision of multiple class services through Internet backbone. With the explosive use of Internet, contemporary Internet routers are susceptible to overloads and their services deteriorate drastically and often cause denial of services. In this paper, an analysis is made how forecasting technique, routing algorithm and Genetic...

متن کامل

A JOINT DUTY CYCLE SCHEDULING AND ENERGY AWARE ROUTING APPROACH BASED ON EVOLUTIONARY GAME FOR WIRELESS SENSOR NETWORKS

Network throughput and energy conservation are two conflicting important performance metrics for wireless sensor networks. Since these two objectives are in conflict with each other, it is difficult to achieve them simultaneously. In this paper, a joint duty cycle scheduling and energy aware routing approach is proposed based on evolutionary game theory which is called DREG. Making a trade-off ...

متن کامل

Multi-Constrained QoS Opportunistic Routing by Optimal Power Tuning in Low Duty-Cycle WSNs

Designing a multi-constrained QoS (Quality of service) communication protocol for mission-critical applications that seeks a path connecting source node and destination node that satisfies multiple QoS constrains such as energy cost, delay, and reliability imposes a great challenge in Wireless Sensor Networks (WSNs). In such challenging dynamic environment, traditional routing and layered infra...

متن کامل

A multi-objective resource-constrained optimization of time-cost trade-off problems in scheduling project

This paper presents a multi-objective resource-constrained project scheduling problem with positive and negative cash flows. The net present value (NPV) maximization and making span minimization are this study objectives. And since this problem is considered as complex optimization in NP-Hard context, we present a mathematical model for the given problem and solve three evolutionary algorithms;...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011